Desenvolvimento de Sistema de Algometria de Pressão

Graziella Bedenik¹, Gabriel Graça², Elyson Carvalho³ and Josimari de Santana⁴

¹Departamento de Engenharia Elétrica, Universidade Federal de Sergipe - graziella.bedenik@gmail.com

²Departamento de Medicina, Universidade Federal de Sergipe - gabrielfosgraca@gmail.com

³Departamento de Engenharia Elétrica, Universidade Federal de Sergipe - ecarvalho@ufs.br

⁴Departamento de Fisioterapia, Universidade Federal de Sergipe - desantanajm@gmail.com

Resumo—Pesquisadores da área concordam, de maneira geral, que a dor é uma experiência complexa. Descrever, entender e medir a experiência dolorosa é necessário para que os conhecimentos da algologia avancem. A quantificação da dor pode ser feita através de um instrumento chamado de algômetro ou dolorímetro. Um dos parâmetros que esse instrumento pode medir é o Limiar de Dor, ponto em que um dado estímulo aplicado comeca a ser doloroso. Se o estímulo é mecânico, chama-se de Limiar de Dor por Pressão (PPT). Um algômetro utilizando um fórceps calibrado para medição de PPT é proposto pela primeira vez na literatura por Yu et al. Em [11] e [12], uma versão aprimorada do instrumento é apresentada e validada. Entretanto, ainda existem desafios a serem superados no tocante a essa configuração de dolorímetro. Nesse artigo, é apresentada a proposta de uma versão ainda mais aprimorada do algômetro de Yu: substituindose os extensômetros colados na parte interna do fórceps por uma célula de carga do tipo biengastada, implementando-se um sistema eletrônico de aquisição e tratamento de dados mais robusto e desenvolvendo-se software próprio para exibição e análise de dados dos experimentos.

Palavras-Chave—medição de dor, fórceps calibrado, algometria de pressão, limiar de dor

I. Introdução

Pesquisadores da área concordam, de maneira geral, que a dor é uma experiência complexa [1]–[3]. Descrever, entender e medir a experiência dolorosa é necessário para que os conhecimentos de algologia (estudo da dor) e o diagnóstico/ tratamento de pacientes avancem [1]–[4]. Quando se estabelece um processo de medição de dor, é necessário que o estímulo aplicado seja quantificável, reproduzível e, de preferência, não invasivo [5]. Esses estímulos, especialmente aqueles nomeados reflexivos, podem ter diferentes naturezas: térmica, elétrica, química e mecânica [1].

Um dos muitos parâmetros medidos nesses processos é o Limiar de Dor, definido como o ponto em que um dado estímulo aplicado começa a ser doloroso. Quando esse estímulo tem natureza mecânica, fala-se em Limiar de Dor por Pressão (PPT). A forma mais bem aceita de medir o PPT é a algometria de pressão (PA), feita por meio do uso de um instrumento chamado algômetro [2], [3], [6]. Essa abordagem é largamente empregada no campo da algologia, principalmente devido a sua aplicabilidade e facilidade de operação [2]. Algômetros, ou dolorímetros, permitem a aplicação de uma força sobre a pele ou determinado músculo do paciente até que se atinja

o *PPT*. Dessa maneira, o aparelho é considerado uma peça chave no desenvolvimento de sistemas de algometria, já que é o agente transmissor da grandeza medida [5].

A validade de algômetros vem sendo estudada em diversos temas referentes à algologia, apontando para sua confiabilidade intra e interavaliadores, acurácia, grande aplicabilidade e sensibilidade [2], [3], [6]. Entretanto, também existem obstáculos no uso de tal tecnologia, sendo alguns dos principais: a dificuldade de se escolher o modelo adequado para o propósito em estudo, a necessidade de treinamento dos avaliadores e a necessidade de aplicação perpendicular à pele ou ao músculo do paciente (o que ocorre com a maioria dos instrumentos em vigor no mercado e na academia) [7]–[9]. Em [10], um algômetro de compressão utilizando fórceps calibrado e que requer pouco treinamento por parte dos avaliadores, além de não necessitar de aplicação perpendicular, é apresentado pela primeira vez na literatura. Em [11] e [12], uma versão aprimorada do instrumento de Yu é apresentada e validada.

Neste artigo, é apresentada a proposta de uma versão ainda mais aprimorada do algômetro utilizando fórceps calibrado. Aqui serão substituídos os extensômetros colados na parte interna do fórceps - que sofrem de forma significativa deformações não-elásticas conforme o uso, prejudicando a precisão do instrumento - por uma célula de carga do tipo biengastada - que possui os extensômetros já conectados em ponte e isolados do ambiente externo, além de um baixo custo. Também será apresentado um sistema eletrônico de aquisição e tratamento de dados mais robusto. Ainda, o sistema de algometria de pressão desenvolvido contará com *software* próprio para exibição e análise de dados, o que não é apresentado em nenhum dos inventos já citados.

Esse trabalho está organizado da seguinte maneira: a Seção II descreve o sistema proposto para o desenvolvimento do instrumento, enquanto a Seção III traz as considerações finais de acordo com os resultados já obtidos de acordo com o cronograma seguido.

II. SISTEMA PROPOSTO

A. Diagrama de Blocos

É apresentado na Figura 1 o diagrama de blocos idealizado para guiar o desenvolvimento do sistema de algometria.

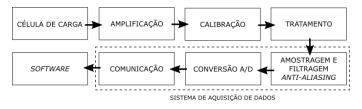


Figura 1. Diagrama de blocos do sistema de algometria que será desenvolvido. Em destaque, sistema de aquisição de dados. As etapas anteriores à filtragem representam o sistema de medição.

A aquisição do sinal de força é iniciada pela deformação realizada pelo operador do instrumento em uma célula de carga acoplada ao fórceps. O sinal é amplificado com o uso de amplificador de instrumentação (INA126) e calibrado, inicialmente, através de amplificadores operacionais (TL084), com ajustes de ganho e de tensão. Posteriormente, o sinal é tratado e passado por um filtro *anti-aliasing*. Tais tratamentos possibilitam a construção de um sistema de aquisição de dados mais eficaz, em que o sinal é convertido de analógico para digital e transmitido via fio ou USB para o *software*. Atualmente, o sistema encontra-se na fase de tratamento, como indicado na Figura 1. Pretende-se fazer modificações para que o ajuste de zero, no momento realizado pelas configurações amplificadoras, seja feito automaticamente ao se pressionar um botão.

B. Design do Instrumento

Vem sendo realizada, em paralelo ao desenvolvimento do sistema, uma etapa de *design thinking* para o instrumento. Esse processo é pautado, principalmente, na facilidade de manuseio do aparelho e na pouca necessidade de treinamento para tal. Além disso, um dos focos está em possibilitar uma maior aplicabilidade do algômetro, por exemplo, em mais espécies e/ou áreas do corpo. A prototipagem do *design* está sendo realizada com auxílio de modelagem e impressão 3D.

III. CONSIDERAÇÕES FINAIS

Conforme cronograma proposto, os resultados alcançados foram: revisão bibliográfica acerca do estudo da dor, seus conceitos principais e a necessidade e criação de instrumentos de medida; pesquisa de mercado; desenvolvimento do sistema de medição e o início do estudo para a criação do sistema de aquisição de dados. Referente à pesquisa de mercado, mostrouse que, atualmente, não existe produto similar ao proposto aqui em comercialização.

Para a continuação do projeto, é prevista a continuidade do sistema de aquisição de dados, os testes e ajustes do sistema em etapas isoladas e em conjunto com o Laboratório de Pesquisa em Neurociência da Universidade Federal de Sergipe (LAPENE/UFS) - parceiro deste trabalho - e uma análise de viabilidade de patente da invenção.

REFERÊNCIAS

 C. R. Chapman, K. L. Casey, R. Dubner, K. M. Foley, R. H. Gracely, A. E. Reading, "Pain Measurement: an Overview", *Pain*, vol. 22, no. 1, pp. 1-31, 1985.

- [2] H. K. Beecher, "The measurement of pain: Prototype for the Quantitative Study of Subjective Responses", *Pharmacological Reviews*, vol. 9, no. 1, pp. 59-209, 1957.
- [3] C. L. Frampton, P. Hughes-Webb, "The Measurement of Pain", Clinical Oncology, vol. 23, no. 6, pp. 381-386, 2011.
- [4] D. N. C. Barro, L. Paolasso, D. A. Beltramone, C. F. Buonanotte, C. Buonanotte, C. Deabato, "Bulding of a Pain Threshold Measurement System", *IEEE Latin America Transactions*, vol. 11, no. 1, pp. 71-76, 2013.
- [5] D. Le Bars, M. Gozariu, S. W. Cadden, "Animal Models of Nociception", *Pharmacological Reviews*, vol. 53, no. 4, pp. 597-652, 2001.
- [6] N. S. Gregory, A. L. Harris, C. R. Robinson, P. M. Dougherty, P. N. Fuchs, K. A. Sluka, "An Overview of Animal Models of Pain: Disease Models and Outcome Measures", *The Journal of Pain*, vol. 14, no. 11, pp. 1255-1269, 2013.
- [7] A. Chiarotto, C. B. Terwee, R. W. Ostelo, "Choosing the Right Outcome Measurement Instruments for Patients with Low Back Pain", Best Practice & Research Clinical Rheumatology, 2017.
- [8] L. S. Chesterton, J. Sim, C. C. Wright, N. E. Foster, "Interrater Reliability of Algometry in Measuring Pressure Pain Thresholds in Healthy Humans, Using Multiple Raters", *The Clinical Journal of Pain*, vol. 23, no. 9, pp. 760-766, 2007.
- [9] B. Vaughan, P. McLaughlin, C. Gosling, "Validity of an Electronic Pressure Algometer", *International Journal of Osteopathic Medicine*, vol. 10, no. 1, pp. 24-28, 2007.
- [10] Y. C. Yu, S. T. Koo, C. H. Kim, Y. Lyu, J. J. Grady, J. M. Chung, "Two Variables that Can Be Used as Pain Indices in Experimental Animal Models of Arthritis", *Journal of Neuroscience Methods*, vol. 115, no. 1, pp. 107-113, 2002.
- [11] D. A. Skyba, R. Radhakrishnan, K. A. Sluka, "Characterization of a Method for Measuring Primary Hyperalgesia of Deep Somatic Tissue", *The Journal of Pain*, vol. 6, no. 1, pp. 41-47, 2005.
- [12] D. V. Tillu, G. F. Gebhart, K. A. Sluka, "Descending Facilitatory Pathways from the RVM Initiate and Maintain Bilateral Hyperalgesia After Muscle Insult", *Pain*, vol. 136, no. 3, pp. 331-339, 2008.